Quantum technology holds immense promise, yet it is riddled with complexity. Anticipated to usher in a slew of technological advancements in the upcoming decades, it is set to offer us more compact and accurate sensors, robustly secure communication networks, and high-capacity computers. These advancements will outpace the capabilities of present computing technologies, aiding in the swift development of new drugs and materials, controlling financial markets, and enhancing weather forecasting.
To realize these benefits, we require what are termed as quantum materials, which display significant quantum physical effects. One such material is graphene. This two-dimensional structural form of carbon has unusual physical properties, such as extraordinarily high tensile strength, thermal and electrical conductivity – as well as certain quantum effects. Restricting the already two-dimensional material even further, for instance, by giving it a ribbon-like shape, gives rise to a range of controllable quantum effects.
This is precisely what Mickael Perrin’s team leverages in their work: For several years now, scientists in Empa’s Transport at Nanoscale Interfaces laboratory, headed by Michel Calame, have been conducting research on graphene nanoribbons under Perrin’s leadership. “Graphene nanoribbons are even more fascinating than graphene itself,” explains Perrin. “By varying their length and width, as well as the shape of their edges, and by adding other atoms to them, you can give them all kinds of electrical, magnetic, and optical properties.”
To read more, click here.