Running on the beach versus a paved road can change an athlete's stride, speed and stability. Alter the force of gravity, and that runner may break their personal record or sink into the ground. Researchers have to consider such parameters when designing extraterrestrial rovers and landers - which can trawl where no person has stepped foot. To better inform this work, a multi-institutional team analyzed the flow of simulated regolith, a type of fragmental debris that covers the moon and rocky planets, using an artificial gravity generator on the International Space Station.

"Studying the flow characteristics of regolith covering extra-terrestrial bodies under low gravity condition is essential for the reliable design and analysis of landers and rovers for space exploration," said corresponding author Shingo Ozaki, professor at Yokohama National University. "Regolith, which is a potentially fluffy and powdery granular material, is a primary concern for the lander or rover; landing on such loose soil is a critical phase during exploration as the footpad of the landing gear may bury into the regolith."

To read more, click here.