Identifying the underlying cause of extreme events such as floods, heavy downpours or tornados is immensely difficult and can take a concerted effort by scientists over several decades to arrive at feasible physical explanations.

Extreme events cause significant deviation from expected behavior and can dictate the overall outcome for a number of scientific problems and practical situations. For example, practical scenarios where a fundamental understanding of can be of vital importance include rogue waves in the ocean that could endanger ships and or increasingly frequent "1,000-year rains," such as the life-threatening deluge in April that deposited 20 inches of rainfall within a seven-hour period in the Fort Lauderdale area.

At the core of uncovering such extreme events is the physics of fluids—specifically turbulent flows, which exhibit a wide range of interesting behavior in time and space. In fluid dynamics, a turbulent flow refers to an irregular flow whereby eddies, swirls and flow instabilities occur. Because of the random nature and irregularity of turbulent streams, they are notoriously difficult to understand or to apply order to through equations.

Researchers from Florida Atlantic University's College of Engineering and Computer Science leveraged a computer-vision deep learning technique and adapted it for nonlinear analysis of extreme events in wall-bounded turbulent flows, which are pervasive in numerous physics and engineering applications and impact wind and hydrokinetic energy, among others.

They need to adapt this to explain political and sociological extreme events.

To read more, click here.