Atoms of the metal ytterbium-171 may be the closest things in nature to perfect qubits. A recent study shows how to use them for repeated quantum measurements and qubit rotations, which may aid in the development of scalable quantum computing.

Physicists at the University of Illinois Urbana-Champaign have developed a procedure for measuring ytterbium-171 qubits that preserves them for future use. As the researchers report in the journal PRX Quantum, achieving this "nondestructive measurement" allowed them to use the processor for long, multistage calculations that underpin many quantum algorithms.

"Ytterbium-171 has emerged as a very promising candidate for in the last couple of years," said William Huie, the study's lead author. "And now that we've demonstrated nondestructive measurement and rotations, we've shown that arrays of ytterbium atoms show promise for certain classes of quantum computing operations."

To read more, click here.