Structures that exhibit strong light–matter coupling can change their optical properties under illumination, offering many potential applications in nanophotonics and optoelectronics. Among the most promising materials for creating these structures are single-layer transition-metal dichalcogenides (TMDs) on top of a silver film. Conventionally, this heterostructure is encased within a microcavity, which enhances the coupling strength at the cost of increasing its fabrication complexity. The microcavity can also limit access to the TMD for postfabrication manipulation. Now Nicolas Zorn Morales at Humboldt University of Berlin and colleagues have shown that strong light–matter coupling can be achieved even without such a microcavity [1].
To read more, click here.