Chiral materials interact with light in very precise ways that are useful for building better displays, sensors and more powerful devices. However, engineering properties such as chirality reliably at scale is still a significant challenge in nanotechnology.
Rice University scientists in the lab of Junichiro Kono have developed two ways of making wafer-scale synthetic chiral carbon nanotube (CNT) assemblies starting from achiral mixtures. According to a study in Nature Communications, the resulting "tornado" and "twisted-and-stacked" thin films can control ellipticity ⎯ a property of polarized light ⎯ to a level and in a range of the spectrum that was previously largely beyond reach.
"These approaches have granted us the ability to deliberately and consistently introduce chirality to materials that, until now, did not exhibit this property on a macroscopic scale," said Jacques Doumani, a graduate student in applied physics at Rice and the lead author of the study. "Our methods yield thin, flexible films with tunable chiral properties."
To read more, click here.