It is a truth of both physics and everyday experience that things fall apart. Ice melts. Buildings crumble. Any object, if you wait long enough, gets mixed up with itself and its surroundings beyond recognition.

But beginning in 2005, a series of breakthroughs made this death march seem optional. In just the right quantum setting, any arrangement of electrons or atoms would stay put for all eternity — even uneven arrangements thrumming with activity. The finding flew in the face of the conventional wisdom that quantum phenomena were fragile things, observable only at extremely low temperatures. It also punched a hole in the foundations of thermodynamics, the venerable branch of physics that explains phenomena like heat and entropy as inevitable consequences of the interplay of vast swarms of particles.

The results came as a shock to physicists like Norman Yao, a graduate student at the time who is now a professor at Harvard University. “Holy hell,” he recalled thinking, using a stronger word than hell. “If this is true in an interacting, many-particle system, then statistical mechanics fails. Thermodynamics fails.”

To read more, click here.