The sunlight received by Earth is a mixed bag of wavelengths ranging from ultraviolet to visible to infrared. Each wavelength carries inherent energy that, if effectively harnessed, holds great potential to facilitate solar hydrogen production and diminish reliance on non-renewable energy sources. Nonetheless, existing solar hydrogen production technologies face limitations in absorbing light across this broad spectrum, particularly failing to harness the potential of near infrared (NIR) light energy that reaches Earth.

Recent research has identified that both Au and Cu7S4 nanostructures exhibit a distinctive optical characteristic known as localized surface plasmon resonance (LSPR).

It can be precisely adjusted to absorb wavelengths spanning the visible to NIR spectrum. A team of researchers, led by Associate Professor Tso-Fu Mark Chang and Lecturer Chun-Yi Chen from the Tokyo Institute of Technology, and Professor Yung-Jung Hsu from National Yang Ming Chiao Tung University, seized this possibility and developed an innovative Au@Cu7S4 yolk@shell nanocrystal capable of producing hydrogen when exposed to both visible and NIR light.

To read more, click here.