A research team from the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and the University of Salerno in Italy has discovered that thin films of elemental bismuth exhibit the so-called non-linear Hall effect, which could be applied in technologies for the controlled use of terahertz high-frequency signals on electronic chips.
Bismuth combines several advantageous properties not found in other systems to date, as the team reports in Nature Electronics. In particular, the quantum effect is observed at room temperature. The thin-layer films can be applied even on plastic substrates and could therefore be suitable for modern high-frequency technology applications.
"When we apply a current to certain materials, they can generate a voltage perpendicular to it. We physicists call this phenomenon the Hall effect, which is actually a unifying term for effects with the same impact, but which differ in the underlying mechanisms at the electron level. Typically, the Hall voltage registered is linearly dependent on the applied current," says Dr. Denys Makarov from the Institute of Ion Beam Physics and Materials Research at HZDR.
Most of these effects are a result of the influence of magnetic fields or magnetism in the material. However, in 2015, scientists discovered that the Hall effect can also occur without the influence of magnetism.
To read more, click here.