The most popular words of 2023 were recently released, with AI Large Language Model (LLM) unquestionably topping the list. As a front-runner, ChatGPT also emerged as one of the international buzzwords of the year. These disruptive innovations in AI owe much to big data, which has played a pivotal role. Yet, AI has simultaneously presented new opportunities and challenges to the development of big data.

High-capacity data storage is indispensable in today's digital economy. However, major storage devices like and semiconductor flash devices face limitations in terms of cost-effectiveness, durability, and longevity.

Optical data storage offers a promising green solution for cost-effective and long-term data storage. Nonetheless, optical data storage encounters a fundamental limitation in the spacing of adjacent recorded features, owing to the optical diffraction limit. This physical constraint not only impedes the further development of direct laser writing machines but also affects and storage technology.

Breaking the diffraction-limited barrier ranks as the foremost challenge in the field of physics, according to the 125 cutting-edge scientific problems released by Science in 2021. It is also among the seven technology breakthroughs predicted by Nature for 2024 and beyond.

A multidisciplinary team led by Professor Min Gu at the University of Shanghai for Science and Technology (USST) and the Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences, has successfully overcome this challenge.

They recently published their latest research achievement, titled "A 3D nanoscale optical disk memory with petabit capacity," in Nature.

For the first time, researchers have demonstrated that capacity can reach the petabit (Pb) level by extending the planar recording architecture to three dimensions with hundreds of layers, thereby breaking the optical diffraction limit barrier of the recorded spots.

To read more, click here.