Researchers have developed a groundbreaking protective coating for indenene, a quantum material promising for ultrafast electronics, enabling its use in air without oxidation. This innovation could revolutionize the future of atomic layer electronics.

The race to create increasingly faster and more powerful computer chips continues as transistors, their fundamental components, shrink to ever smaller and more compact sizes. In a few years, these transistors will measure just a few atoms across – by which point, the miniaturization of the silicon technology currently used will have reached its physical limits. Consequently, the quest for alternative materials with entirely new properties is crucial for future technological advancements.

Back in 2021, scientists from the Cluster of Excellence ct.qmat – Complexity and Topology in Quantum Matter at the universities JMU Würzburg and TU Dresden made a significant discovery: topological quantum materials such as indenene, which hold great promise for ultrafast, energy-efficient electronics. The resulting, extremely thin quantum semiconductors are composed of a single atom layer – in indenene’s case, indium atoms – and act as topological insulators, conducting electricity virtually without resistance along their edges.

“Producing such a single atomic layer requires sophisticated vacuum equipment and a specific substrate material. To utilize this two-dimensional material in electronic components, it would need to be removed from the vacuum environment. However, exposure to air, even briefly, leads to oxidation, destroying its revolutionary properties and rendering it useless,” explains experimental physicist Professor Ralph Claessen, ct.qmat’s Würzburg spokesperson.

The ct.qmat Würzburg team has now managed to solve this problem. Their results have been published in the journal Nature Communications.

To read more, click here.