Korea Electrotechnology Research Institute (KERI) has reached a significant milestone with the publication of a groundbreaking study in a globally esteemed journal, marking a crucial stride toward the commercialization of all-solid-state batteries, free from the inherent risks of explosion and fire.

Dr. Park Jun-woo of the KERI Next-Generation Battery Research Center and Sung Junghwan (student researcher at the UST KERI Campus) have successfully engineered a revolutionary technology. This technology, focused on the "size-controlled wet-chemical synthesis of solid-state electrolytes (sulfide superionic conductors)," not only slashes the processing time and cost by over fifty percent but also doubles the resultant quality.

All-solid-state batteries leverage solid-state electrolytes in lieu of liquid counterparts for ion transfer between the cathode (+) and anode (-), significantly reducing the risk of fire or explosion. However, for integration into all-solid-state batteries, particularly in the cathode, solid-state electrolytes must be minute, measuring a mere few micrometers – roughly one-hundredth the thickness of a human hair.

KERI has pioneered a technology capable of mass-producing these diminutive solid-state electrolytes with heightened ionic conductivity through a simplified process. Contrary to existing practices, where solid-state electrolytes are often large in particle size, necessitating additional processes such as mechanical grinding, KERI's approach mitigates both time and cost burdens associated with such processes. Additionally, it eliminates the performance degradation of solid-state electrolytes induced by grinding, a significant impediment to their commercialization.

To read more, click here.