In some materials, spins form complex magnetic structures within the nanometer and micrometer scale in which the magnetization direction twists and curls along specific directions. Examples of such structures are magnetic bubbles, skyrmions, and magnetic vortices.

Spintronics aims to make use of such tiny magnetic structures to store data or perform logic operations with very low power consumption compared to today's dominant microelectronic components. However, the generation and stabilization of most of these magnetic textures is restricted to a few materials and achievable under very specific conditions (temperature, magnetic field, etc.).

An led by HZB physicist Dr. Sergio Valencia has now investigated a new approach that can be used to create and stabilize complex spin textures, such as radial vortices, in a variety of compounds. In a radial vortex, the magnetization points towards or away from the center of the structure. This type of magnetic configuration is usually highly unstable.

Within this novel approach, radial vortices are created with the help of superconducting structures, while the presence of surface defects achieves their stabilization.

To read more, click here.