Nanoscale materials present us with astonishing chemical and physical properties that help materialize applications such as single molecular sensing and minimally invasive photothermal therapy—which were once just theories—into reality.
The unique abilities of nanoparticles make them lucrative materials for a wide range of applications both for research and industrial purposes. However, achieving the latter becomes difficult due to the lack of a technique for rapid and uniform transfer of a monolayer of nanoparticles, which is crucial for device fabrication.
A possible way out of this dilemma is adopting electrostatic assembly processes where the nanoparticles attach themselves to an oppositely charged surface, and once a monolayer is formed, the nanoparticles then self-limit further assembly by repelling other similarly charged nanoparticles away from the surface. Unfortunately, this process can be very time-consuming.
While artificial methods struggle with these drawbacks, underwater adhesion processes found in nature have evolved into unique strategies to overcome this problem.
In this regard, a team of researchers from Gwangju Institute of Science and Technology, led by Ph.D. student Doeun Kim (first author) and Assistant Professor Hyeon-Ho Jeong (corresponding author), have developed a "mussel-inspired" one-shot nanoparticle assembly technique that transports materials from water in microscopic volumes to 2-inch wafers in 10 seconds, while enabling 2D mono-layered assembly with excellent surface coverage of around 40%.
Their work was published in Advanced Materials and highlighted as a frontispiece.
To read more, click here.