Like any other battery, a quantum battery is a device that stores energy. But unlike its electrochemical counterparts, which are charged by flows of electrons, a quantum battery feeds on photons. Effects such as quantum entanglement and quantum coherence mean that a quantum battery can charge faster as you add more cells (see Viewpoint: Sizing Up the Potential of Quantum Batteries). Shabir Barzanjeh at the University of Calgary, Canada, and his colleagues now propose a charging protocol for a quantum battery that maximizes stored energy while minimizing energy dissipation during charging [1]. The novelty lies in inducing nonreciprocity, an invaluable element in optical and microwave signal processing that allows light to propagate asymmetrically along opposite directions.
To read more, click here.