Imagine sparkling diamonds, not forged over millions of years in the Earth’s fiery depths, but whipped up in a lab in just a quarter of an hour. This scenario just became a reality thanks to a groundbreaking new method developed by scientists in South Korea. Their research could shatter the traditional diamond market and usher in a new era of diamond production.

For decades, growing diamonds in a lab has relied on replicating the Earth’s mantle — a colossal undertaking requiring immense pressure and scorching temperatures to coax carbon to turn into synthetic diamonds. This method, known as high-pressure, high-temperature (HPHT) growth, is not only energy-intensive and time-consuming (weeks), but it also yields limited results. HPHT diamonds are capped at around a blueberry’s size, and the process struggles to produce anything larger.

The new technique developed by Dr. Rodney Ruoff and his team at the Institute for Basic Science in South Korea throws those limitations out the window. Instead of replicating the Earth’s fiery furnace, they’ve devised a surprisingly simple method that operates at sea-level pressure. Their secret lies in a specially designed chamber and the use of gallium, a metal that catalyzes the formation of graphene from methane.

To read more, click here.