Advancements in qubit technology at the University of Basel show promise for scalable quantum computing, using electron and hole spins to achieve precise qubit control and interactions.
The pursuit of a practical quantum computer is in full swing, with researchers worldwide exploring a wide array of qubit technologies. Despite extensive efforts, there is still no consensus on which type of qubit best maximizes the potential of quantum information science.
Qubits are the foundation of a quantum computer. They’re responsible for processing, transferring, and storing data. Effective qubits must reliably store and rapidly process information. This demands stable, swift interactions among a large number of qubits that external systems can accurately control.
Today’s most advanced quantum computers possess only a few hundred qubits. This limits them to performing calculations that conventional computers are already capable of and can often do more efficiently. For quantum computing to advance, researchers must find a way to accommodate millions of qubits on a single chip.
To solve the problem of arranging and linking thousands of qubits, researchers at the University of Basel and the NCCR SPIN rely on a type of qubit that uses the spin (intrinsic angular momentum) of an electron or a hole. A hole is essentially a missing electron in a semiconductor. Both holes and electrons possess spin, which can adopt one of two states: up or down, analogous to 0 and 1 in classical bits. Compared to an electron spin, a hole spin has the advantage that it can be entirely electrically controlled without needing additional components like micromagnets on the chip.
To read more, click here.