In our communication-centered society, Moore's law sets a high expectation for the increasing rate of the packing density of Si-based transistors. This drives the search for thickness-scalable high dielectric constant (high k) gate layers. Current material candidates, from simple binary oxides to complex polar oxides, all have failed to solve the "polarizability-scalability-insulation robustness" trilemma, hence contributing to the sum total of issues threatening the continuation of the Moore's law.
A team of material scientists led by Jun Ouyang from Qilu University of Technology in Jinan, China recently proposed a solution to this trilemma on gate layers, which is an ultrathin film of a ferroelectric oxide in its superparaelectric (SPE) state.
The team published their research article in Journal of Advanced Ceramics on April 30, 2024.
To read more, click here.