The next time you cook pasta, imagine that you are cooking spaghetti, rigatoni, and seven other varieties all together, and they need to be separated onto 10 different plates before serving. A colander can remove the water — but you still have a mound of unsorted noodles.

Now imagine that this had to be done for thousands of tons of pasta a day. That gives you an idea of the scale of the problem facing Brendan Smith PhD ’18, co-founder and CEO of SiTration, a startup formed out of MIT’s Department of Materials Science and Engineering (DMSE) in 2020.

SiTration, which raised $11.8 million in seed capital led by venture capital firm 2150 earlier this month, is revolutionizing the extraction and refining of copper, cobalt, nickel, lithium, precious metals, and other materials critical to manufacturing clean-energy technologies such as electric motors, wind turbines, and batteries. Its initial target applications are recovering the materials from complex mining feed streams, spent lithium-ion batteries from electric vehicles, and various metals refining processes.

The company’s breakthrough lies in a new silicon membrane technology that can be adjusted to efficiently recover disparate materials, providing a more sustainable and economically viable alternative to conventional, chemically intensive processes. Think of a colander with adjustable pores to strain different types of pasta. SiTration’s technology has garnered interest from industry players, including mining giant Rio Tinto.

To read more, click here.