It’s pretty easy to see that a rock and a chipmunk are different. The rock doesn’t do much of anything except erode slowly. The chipmunk, on the other hand, is a flurry of activity. It endlessly scans its environment in search of food or danger. And when either one shows up, the chipmunk is quick to react. At a more fundamental level, however, what really is the difference between the inanimate rock and the very animate chipmunk? What’s the difference at the level of mathematical physics and chemistry? 

This question lies at the heart of a three-day workshop on “Information-Driven States of Matter” that I’ll be co-hosting along with Gourab Ghoshal and Artemy Kolchinsky next week at the University of Rochester. I am really looking forward to the meeting, and today I want to give you a preview of some of the topics we’ll be exploring since they are bound to drive future columns.

Over the past few decades, physicists have increasingly begun to view life as a unique “state of matter” that requires special consideration. It began 70 years ago when Edwin Schrödinger wrote his seminal work, What Is Life? In that small book, he asked whether living systems might require the development of new laws of physics. Although that remains a contentious question, many scientists who study life as a “complex system” have come to believe that living systems are unique in at least one remarkable way: they use information. 

To read more, click here.