Researchers at the University of Kansas have made a breakthrough in understanding organic semiconductors, hinting at more efficient and versatile solar cells.
For years, silicon has dominated the solar energy landscape. Its efficiency and durability have made it the go-to material for photovoltaic panels. However, silicon-based solar cells are rigid and expensive to produce, limiting their potential for curved surfaces.
Organic semiconductors, these carbon-based materials offer a viable alternative at a lower cost and with greater flexibility. “They can potentially lower the production cost for solar panels because these materials can be coated on arbitrary surfaces using solution-based methods — just like how we paint a wall,” explained Wai-Lun Chan, associate professor of physics & astronomy at the University of Kansas.
But these organic semiconductors aren’t just about cost savings. They boast an ability to be tuned to absorb specific wavelengths of light, opening up a plethora of new possibilities. “These characteristics make organic solar panels particularly suitable for use in next-generation green and sustainable buildings,” noted Chan. Imagine transparent and colored solar panels, seamlessly integrated into architectural designs.
To read more, click here.