Over the past few decades, electronics engineers have developed increasingly flexible, versatile and highly performing devices for a wide range of real-world applications. Some of their efforts have been aimed at creating smart and sensing textiles, which could be used to fabricate stretchy robotic systems, medical devices and wearable technologies.

Researchers at Jiangnan University recently introduced a new textile engineering approach to fabricate woven and soft actuators for health care technologies and robotic systems. Their proposed fabrication strategy, outlined in a paper in Cell Reports Physical Science, is both scalable and easily-designable, which could contribute to its future large-scale adoption.

"Conventional methods like 3D printing and elastomer casting did not quite meet the need for adaptability and comfort in soft robotics and wearable devices, particularly in terms of developing integrated devices that are not only flexible and functional but also low-cost, easily customizable and scalable," Dr. Fengxin Sun, corresponding author of the paper, told Tech Xplore.

"Inspired by the 'yarn-to-clothes' manufacturing method, we utilized a two-system weaving technology to seamlessly integrate both sensing capabilities and actuation modes into soft robotic 'garments.'"

To read more, click here.