Back in June 2022, Oak Ridge National Laboratory debuted Frontier—the world’s most powerful supercomputer. Frontier can perform a billion billion calculations per second. And yet there are computational problems that Frontier may never be able to solve in a reasonable amount of time.

Some of these problems are as simple as factoring a large number into primes. Others are among the most important facing Earth today, like quickly modeling complex molecules for drugs to treat emerging diseases, and developing more efficient materials for carbon capture or batteries.

However, in the next decade, we expect a new form of supercomputing to emerge unlike anything prior. Not only could it potentially tackle these problems, but we hope it’ll do so with a fraction of the cost, footprint, time, and energy. This new supercomputing paradigm will incorporate an entirely new computing architecture, one that mirrors the strange behavior of matter at the atomic level—quantum computing.

For decades, quantum computers have struggled to reach commercial viability. The quantum behaviors that power these computers are extremely sensitive to environmental noise, and difficult to scale to large enough machines to do useful calculations. But several key advances have been made in the last decade, with improvements in hardware as well as theoretical advances in how to handle noise. These advances have allowed quantum computers to finally reach a performance level where their classical counterparts are struggling to keep up, at least for some specific calculations.

For the first time, we here at IBM can see a path toward useful quantum computers, and we can begin imagining what the future of computing will look like. We don’t expect quantum computing to replace classical computing. Instead, quantum computers and classical computers will work together to run computations beyond what’s possible on either alone. Several supercomputer facilities around the world are already planning to incorporate quantum-computing hardware into their systems, including Germany’s Jupiter, Japan’s Fugaku, and Poland’s PSNC. While it has previously been called hybrid quantum-classical computing, and may go by other names, we call this vision quantum-centric supercomputing.

To read more, click here.