Auxetics, which expand when stretched and contract when compressed, defy conventional behavior. NIST researchers have now simplified the process of using them.

Imagine pulling on the long ends of a rectangular piece of rubber. It should become narrower and thinner. But what if, instead, it got wider and fatter?

Now, push in on those same ends. What if the rubber became narrower and thinner?

Such common-sense-defying materials do exist. They’re called auxetics, and they have a raft of unique properties that make them well-suited for sneaker insoles, bomb-resilient buildings, car bumpers, and clothing.

Despite this great potential, auxetic products have been slow to market. Researchers at the National Institute of Standards and Technology (NIST) and the University of Chicago hope to change this.

In a new study published in NPJ Computational Materials, they announced they’ve developed a new tool that makes designing materials with auxetic properties easier and faster. An algorithm, the tool enables precise three-dimensional design of auxetics.

To read more, click here.