When different quantum states combine, new collective states of matter can emerge. In the quantum realm, combining components such as atoms that possess quantum effects can give rise to macroscopic quantum states of matter, featuring exotic quantum excitations that do not exist anywhere else.

In a collaboration between Aalto University and the Institute of Physics CAS, researchers built an artificial quantum material, atom by atom, from magnetic titanium on top of a magnesium oxide substrate. They then carefully engineered how atoms interacted inside the material with the goal of birthing a new state of quantum matter. Jose Lado, assistant professor at Aalto University, created the theoretical design to engineer the material featuring topological quantum magnetism, and a group led by associate professor Kai Yang at the Institute of Physics CAS built and measured the artificial material using atomic manipulation with scanning tunneling microscopy.

As a result, the researchers demonstrated for the first time a new quantum state of matter known as a higher-order topological quantum magnet. The topological magnet could represent a new way to achieve substantial protection against decoherence in quantum technology.

The research was published today in Nature Nanotechnology:  https://www.nature.com/articles/s41565-024-01775-2

To read more, click here.