The atoms of amorphous solids like glass have no ordered structure; they arrange themselves randomly, like scattered grains of sand on a beach. Normally, making materials amorphous — a process known as amorphization — requires considerable amounts of energy. The most common technique is the melt-quench process, which involves heating a material until it liquifies, then rapidly cooling it so the atoms don’t have time to order themselves in a crystal lattice. 

Now, researchers at the University of Pennsylvania School of Engineering and Applied Science (Penn Engineering), the Indian Institute of Science (IISc) and the Massachusetts Institute of Technology (MIT) have developed a new method for amorphizing at least one material — wires made of indium selenide, or In2Se3 — that requires as little as one billion times less power density, a result described in a new paper in Nature. This advancement could unlock wider applications for phase-change memory (PCM) — a promising memory technology that could transform data storage in devices from cell phones to computers.

To read more, click here.