Quantized vortices – one of the defining features of superfluidity – have been seen in a supersolid for the first time. Observed by researchers in Austria, these vortices provide further confirmation that supersolids can be modelled as superfluids with a crystalline structure. This model could have variety of other applications in quantum many body physics and Austrian team now using it to study pulsars, which are rotating and magnetized neutron stars.
A superfluid is a curious state of matter that can flow without any friction. Superfluid systems that have been studied in the lab include helium-4; type-II superconductors; and Bose–Einstein condensates (BECs) – all of which exist at very low temperatures.
More than five decades ago, physicists suggested that some systems could exhibit crystalline order and superfluidity simultaneously in a unique state of matter called a supersolid. In such a state, the atoms would be described by the same wavefunction and are therefore delocalized across the entire crystal lattice. The order of the supersolid would therefore be defined by the nodes and antinodes of this wavefunction.
In 2004, Moses Chan of the Pennsylvania State University in the US and his PhD student Eun-Seong Kim reported observing a supersolid phase in superfluid helium-4. However, Chan and others have not been able to reproduce this result. Subsequently, researchers including Giovanni Modugno at Italy’s University of Pisa and Francesca Ferlaino at the University of Innsbruck in Austria have demonstrated evidence of supersolidity in BECs of magnetic atoms.
To read more, click here.