Physicists in the US have found an explanation for why electrons in a material called pentalayer moiré graphene carry fractional charges even in the absence of a magnetic field. This phenomenon is known as the fractional quantum anomalous Hall effect, and teams at the Massachusetts Institute of Technology (MIT), Johns Hopkins University and Harvard University/University of California, Berkeley have independently suggested that an interaction-induced topological “flat” band in the material’s electronic structure may be responsible.

Scientists already knew that electrons in graphene could, in effect, split into fractions of themselves in the presence of a very strong magnetic field. This is an example of the fractional quantum Hall effect, which occurs when a material’s Hall conductance is quantized at fractional multiples of e2/h.

In 2023, several teams of researchers introduced a new twist by observing this fractional quantization even without a magnetic field. The fractional quantum anomalous Hall effect, as it was dubbed, was initially observed in material called twisted molybdenum ditelluride (MoTe2).

Then, in February this year, an MIT team led by physicist Long Ju spotted the same effect in pentalayer moiré graphene. This material consists of a layer of a two-dimensional hexagonal boron nitride (hBN) with five layers of graphene (carbon sheets just one atom thick) stacked on top of it. The graphene and hBN layers are twisted at a small angle with respect to each other, resulting in a moiré pattern that can induce conflicting properties such as superconductivity and insulating behaviour within the structure.

To read more, click here.