Researchers at the University of Virginia have made significant advancements in understanding how heat flows through thin metal films, critical for designing more efficient computer chips.

This study confirms Matthiessen’s rule at the nanoscale, enhancing heat management in ultra-thin copper films used in next-generation devices, thereby improving performance and sustainability.

Researchers at the University of Virginia have made a significant breakthrough in improving the efficiency of computer chips by confirming a key principle that governs heat flow in thin metal films. This discovery, published in Nature Communications and supported by the Semiconductor Research Corporation in partnership with Intel, advances our understanding of thermal conductivity in metals used in next-generation chips. The findings could enable faster, smaller, and more energy-efficient devices than ever before.

“As devices continue to shrink, the importance of managing heat becomes paramount,” explained lead researcher and mechanical and aerospace engineering Ph.D. student Md. Rafiqul Islam. “Consider high-end gaming consoles or AI-driven data centers, where constant, high-power processing often leads to thermal bottlenecks. Our findings provide a blueprint to mitigate these issues by refining the way heat flows through ultra-thin metals like copper.”

To read more, click here.