The pursuit of controlled nuclear fusion as a source of clean, abundant energy is moving closer to realization, thanks to advancements in inertial confinement fusion (ICF). This method involves igniting deuterium-tritium (DT) fuel by subjecting it to extreme temperatures and pressures during a precisely engineered implosion process.

In DT fusion, most of the released energy is carried by neutrons, which can be harnessed for electricity generation. Simultaneously, alpha particles remain trapped within the fuel, where they drive further fusion reactions. When the energy deposited by these alpha particles surpasses the energy input from the implosion, the plasma enters a self-sustaining “burning” phase. This significantly boosts energy output and density.

A breakthrough occurred in February 2021 at the National Ignition Facility (NIF), where scientists successfully achieved a burning plasma state in an ICF experiment. This achievement represents a critical step forward in the development of fusion energy and offers insights into the extreme conditions that existed in the early universe.

However, within this extreme state, Hartouni and his colleagues observed novel physical phenomena in experiments conducted at the NIF: the neutron spectrum data deviated significantly from hydrodynamic predictions, indicating the emergence of supra-thermal DT ions. These observations challenge existing models that rely on Maxwell distributions and underscore the importance of previously overlooked kinetic effects and non-equilibrium mechanisms.

To read more, click here.