Researchers at the University of Surrey have made a breakthrough in understanding how Hexagonal Boron Nitride (hBN), a 2D material, grows and forms nanostructures on metal substrates. This discovery could lead to more efficient electronics, cleaner energy solutions, and environmentally friendly chemical manufacturing.

Known as “white graphene,” hBN is an ultra-thin material only one atom thick. It is highly durable, capable of withstanding extreme temperatures, resisting chemical damage, and blocking electrical currents. These properties make hBN an essential material in advanced electronics, where it protects sensitive microchips and supports the development of faster, more efficient transistors.

The researchers have also demonstrated the creation of nanoporous hBN, a novel form of the material with tiny, structured voids. This unique structure enables selective absorption and advanced catalysis, significantly enhancing its potential for environmental applications. These include detecting and filtering pollutants, improving hydrogen storage, and serving as electrochemical catalysts for fuel cells in advanced energy systems.

To read more, click here.