In 1950 the Italian physicist Enrico Fermi was discussing the possibility of intelligent alien life with his colleagues. If alien civilizations exist, he said, some should surely have had enough time to expand throughout the cosmos. So where are they?

Many answers to Fermi’s “paradox” have been proposed: Maybe alien civilizations burn out or destroy themselves before they can become interstellar wanderers. But perhaps the simplest answer is that such civilizations don’t appear in the first place: Intelligent life is extremely unlikely, and we pose the question only because we are the supremely rare exception.

A new proposal by an interdisciplinary team of researchers challenges that bleak conclusion. They have proposed nothing less than a new law of nature, according to which the complexity of entities in the universe increases over time with an inexorability comparable to the second law of thermodynamics — the law that dictates an inevitable rise in entropy, a measure of disorder. If they’re right, complex and intelligent life should be widespread.

In this new view, biological evolution appears not as a unique process that gave rise to a qualitatively distinct form of matter — living organisms. Instead, evolution is a special (and perhaps inevitable) case of a more general principle that governs the universe. According to this principle, entities are selected because they are richer in a kind of information that enables them to perform some kind of function.

This hypothesis (opens a new tab), formulated by the mineralogist Robert Hazen and the astrobiologist Michael Wong of the Carnegie Institution in Washington, D.C., along with a team of others, has provoked intense debate. Some researchers have welcomed the idea as part of a grand narrative about fundamental laws of nature. They argue that the basic laws of physics are not “complete” in the sense of supplying all we need to comprehend natural phenomena; rather, evolution — biological or otherwise — introduces functions and novelties that could not even in principle be predicted from physics alone. “I’m so glad they’ve done what they’ve done,” said Stuart Kauffman, an emeritus complexity theorist at the University of Pennsylvania. “They’ve made these questions legitimate.”

To read more, click here.