Graphene-based superconductors are a class of materials with many superconducting phases, all of which are tunable by an electric field. One of the hallmarks of superconductivity is kinetic inductance, which quantifies the material’s tendency to oppose a change in current and which arises from the inertia of charge carriers. Rounak Jha at the University of Basel, Switzerland, and his colleagues now report the measurement of tunable kinetic inductance in so-called magic-angle twisted trilayer graphene [1]. Furthermore, they find that this kinetic inductance can be unusually large, making trilayer graphene a promising prospect for superconducting quantum computers and quantum sensors.
To read more, click here.