On a weekend in mid-May, a clandestine mathematical conclave convened. Thirty of the world’s most renowned mathematicians traveled to Berkeley, Calif., with some coming from as far away as the U.K. The group’s members faced off in a showdown with a “reasoning” chatbot that was tasked with solving problems they had devised to test its mathematical mettle. After throwing professor-level questions at the bot for two days, the researchers were stunned to discover it was capable of answering some of the world’s hardest solvable problems. “I have colleagues who literally said these models are approaching mathematical genius,” says Ken Ono, a mathematician at the University of Virginia and a leader and judge at the meeting. 

The chatbot in question is powered by o4-mini, a so-called reasoning large language model (LLM). It was trained by OpenAI to be capable of making highly intricate deductions. Google’s equivalent, Gemini 2.5 Flash, has similar abilities. Like the LLMs that powered earlier versions of ChatGPT, o4-mini learns to predict the next word in a sequence. Compared with those earlier LLMs, however, o4-mini and its equivalents are lighter-weight, more nimble models that train on specialized datasets with stronger reinforcement from humans. The approach leads to a chatbot capable of diving much deeper into complex problems in math than traditional LLMs.

To track the progress of o4-mini, OpenAI previously tasked Epoch AI, a nonprofit that benchmarks LLMs, to come up with 300 math questions whose solutions had not yet been published. Even traditional LLMs can correctly answer many complicated math questions. Yet when Epoch AI asked several such models these questions, which were dissimilar to those they had been trained on, the most successful were able to solve less than 2 percent, showing these LLMs lacked the ability to reason. But o4-mini would prove to be very different.

To read more, click here.