Scientists at the Massachusetts Institute of Technology (MIT) in the US have achieved the cleanest demonstration yet of the famous double-slit experiment. Using two single atoms as the slits, they inferred the photon’s path by measuring subtle changes in the atoms’ properties after photon scattering. Their results matched the predictions of quantum theory: interference fringes when no path was observed, two bright spots when it was.

First performed in the 1800s by Thomas Young, the double-slit experiment has been revisited many times. Its setup is simple: send light toward a pair of slits in a screen and watch what happens. Its outcome, however, is anything but. If the light passes through the slits unobserved, as it did in Young’s original experiment, an interference pattern of bright and dark fringes appears, like ripples overlapping in a pond. But if you observe which slit the light goes through, as Albert Einsten proposed in a 1920s “thought experiment” and as other physicists have since demonstrated in the laboratory, the fringes vanish in favour of two bright spots. Hence, whether light acts as a wave (fringes) or a particle (spots) depends on whether anyone observes it. Reality itself seems to shift with the act of looking.

To read more, click here.