Vacuum tunnelling – an exotic process by which empty space can become temporarily filled with virtual particles when an extremely strong electric or magnetic field is applied to it – has never been observed in an experiment. This is because the field required to produce this “Schwinger effect” in the laboratory is simply too high and is usually only generated during intense astrophysical events. Theoretical physicists at the University of British Columbia (UBC) in Canada are now saying that an analogous effect could occur in a much simpler, tabletop system. In their model, a film of superfluid helium can be substituted for the vacuum and the superfluid flow of this helium for the massive field.
To read more, click here.