Researchers have discovered a new approach to producing graphene that intentionally incorporates structural defects, enhancing the material’s performance. This advancement could broaden its usefulness across fields such as sensors, batteries, and electronic devices.
A team from the University of Nottingham’s School of Chemistry, the University of Warwick, and Diamond Light Source has created a one-step technique to grow graphene-like films. The method uses a molecule called Azupyrene, whose structure naturally mirrors the type of defect they wanted to introduce. Their findings were published in the journal Chemical Science.
David Duncan, Associate Professor from the University of Nottingham was one of the lead authors on the study, he says: “Our study explores a new way to make graphene, this super-thin, super-strong material is made of carbon atoms, and while perfect graphene is remarkable, it is sometimes too perfect. It interacts weakly with other materials and lacks crucial electronic properties required in the semiconductor industry.
“Usually, defects in material are seen as problems or mistakes that reduce performance; we have used them intentionally to add functionality. We found that the defects can make the graphene more “sticky” to other materials, making it more useful as a catalyst, as well as improving its capability of detecting different gases for use in sensors. The defects can also alter the electronic and magnetic properties of the graphene, for potential applications in the semiconductor industry.”
To read more, click here.