1) is entanglement signaling with entangled Glauber states possible because they are over-complete non-orthogonal and distinguishable with a non-unitary dynamics (nonlinear non-unitary Landau-Ginzburg c-number ODLRO eq replaces nonlocal linear Schrodinger 2nd-quantized eq in Fock number space - e.g. paper by Jorge Berger cited in my http://journalofcosmology.com/SarfattiConsciousness.pdf ?

2) Is dark energy Hawking-Unruh thermal radiation from our future event horizon that is a Wheeler-Feynman total absorber? The Hawking radiation density on the horizon Lp thick is hc/Lp^4 with temperature hc/LpkB. The advanced waves back from the future to us are red-shifted down to temperature hc/(LpA^1/2)^1/2 to us - and as is well known the advanced Wheeler-Feynman Hawking radiation looks like zero point virtual photons at that stage. Plugging in the T^4 black body radiation law gives dark energy density hc/Lp^2A as actually measured where A is the area/Hawking entropy of our future horizon, where our future light cone crosses it.

3) Is this horizon a Seth Lloyd computer and is it also a ’t Hooft-Susskind hologram screen with us as its retro-causally Aharonov post-selected computed 3D images along with all the matter fields in the interior bulk of the causal diamond of both past (pre-selected) and future 2D horizons?

it’s all in the formalism - interpretation independent.

|Alice, Bob) ~ |A)|B) + |A’)|B’)

(A|A) = 1 et-al

(A|A’) =/= 0 when A =/= A’

(B|B’) =/= 0 when B =/= B’

P(B) = Trace over A & A’ {|B)(B| |Alice, Bob)(Alice,Bob|}

i.e.

|A)|B)(B|(A| + |A)|B)(B’|(A’| + |A’)|B’)(B’|(A’| + |A’)|B’)(B|(A|

Trace ---)

(B|(A|{|A)|B)(B|(A| + |A)|B)(B’|(A’| + |A’)|B’)(B’|(A’| + |A’)|B’)(B|(A|}|A)|B)

+(B| (A’|{|A)|B)(B|(A| + |A)|B)(B’|(A’| + |A’)|B’)(B’|(A’| + |A’)|B’)(B|(A|}|A’)|B)

= {(B|(A||A)|B)(B|(A||A)|B) + (B|(A||A)|B)(B’|(A’||A)|B) + (B|(A||A’)|B’)(B’|(A’||A)|B) + (B|(A||A’)|B’)(B|(A||A)|B)}

+|{(B| (A’|A)|B)(B|(A||A’)|B) + (B| (A’|A)|B)(B’|(A’||A’)|B) + (B| (A’|A’)|B’)(B’|(A’| |A’)|B)+(B| (A’ |A’)|B’)(B|(A||A’)|B)}

= {1 + (B’||B)(A’||A) + (B||B’)(B’||B)(A||A’)(A’||A) + (B|B’)|(A||A’)(A||A)}

+|{ (A’|A)(A||A’) + (A’|A)(A’||A’)(B’||B) + (B||B’) (B’||B)+(B||B’) (A||A’)}

= {1 + (B’||B)(A’||A) +|(B||B’)|^2|(A||A’)|^2 + (B|B’)|(A||A’)|^2}

+|{ |(A’|A)|^2 + (A’|A)(B’||B) + |(B||B’)|^2 +(B||B’) (A||A’)}

THE ABOVE ALGEBRA NEEDS TO BE CHECKED FOR ERRORS.

In the special case that two Glauber SENDER states |A) and |A’) are entangled with a single qubit B i.e. (B|B’) = 0

then

P(B) ~ 1 + |(A||A’)|^2

This is an entanglement signal because of the |(A||A’)|^2 MODULATION term absent in the usual states used e.g. in Aspect’s experiment where Alice and Bob are both micro-qubit states instead of macro-QUBIT Glauber states.

Born’s probability interpretation breaks down completely here because of distinguishable over-complete non-orthgonal base states used in the entanglement.

This is an entanglement signal because of the ||^2 MODULATION term absent in the usual states used e.g. in Aspect’s experiment where Alice and Bob are both micro-qubit states instead of macro-QUBIT Glauber states.

Born’s probability interpretation breaks down completely here because of distinguishable over-complete non-orthgonal base states used in the entanglement.

_______________________________________________

ExoticPhysics mailing list

http://mail.softcafe.net/cgi-bin/mailman/listinfo/exoticphysics