it’s all in the formalism - interpretation independent.

 

|Alice, Bob) ~ |A)|B) + |A’)|B’)

 

(A|A) = 1 et-al

 

(A|A’) =/= 0 when A =/= A’

 

(B|B’) =/= 0 when B =/= B’

 

P(B) = Trace over A & A’ {|B)(B| |Alice, Bob)(Alice,Bob|}

 

i.e.

 

|A)|B)(B|(A| + |A)|B)(B’|(A’| + |A’)|B’)(B’|(A’| + |A’)|B’)(B|(A|

 

 

Trace ---)

 

(B|(A|{|A)|B)(B|(A| + |A)|B)(B’|(A’| + |A’)|B’)(B’|(A’| + |A’)|B’)(B|(A|}|A)|B)

 

+(B| (A’|{|A)|B)(B|(A| + |A)|B)(B’|(A’| + |A’)|B’)(B’|(A’| + |A’)|B’)(B|(A|}|A’)|B)

 

= {(B|(A||A)|B)(B|(A||A)|B) + (B|(A||A)|B)(B’|(A’||A)|B) + (B|(A||A’)|B’)(B’|(A’||A)|B) + (B|(A||A’)|B’)(B|(A||A)|B)}

 

+|{(B| (A’|A)|B)(B|(A||A’)|B) + (B| (A’|A)|B)(B’|(A’||A’)|B) + (B| (A’|A’)|B’)(B’|(A’| |A’)|B)+(B| (A’ |A’)|B’)(B|(A||A’)|B)}

 

= {1 + (B’||B)(A’||A) + (B||B’)(B’||B)(A||A’)(A’||A) + (B|B’)|(A||A’)(A||A)}

 

+|{ (A’|A)(A||A’) + (A’|A)(A’||A’)(B’||B) + (B||B’) (B’||B)+(B||B’) (A||A’)}

 

= {1 + (B’||B)(A’||A) +|(B||B’)|^2|(A||A’)|^2 + (B|B’)|(A||A’)|^2}

 

+|{ |(A’|A)|^2 + (A’|A)(B’||B) + |(B||B’)|^2 +(B||B’) (A||A’)}

 

THE ABOVE ALGEBRA NEEDS TO BE CHECKED FOR ERRORS.

 

In the special case that two Glauber SENDER states |A) and |A’) are entangled with a single qubit B i.e. (B|B’) = 0

 

then

 

P(B) ~ 1 + |(A||A’)|^2

 

This is an entanglement signal because of the  |(A||A’)|^2 MODULATION term absent in the usual states used e.g. in Aspect’s experiment where Alice and Bob are both micro-qubit states instead of macro-QUBIT Glauber states.

 

Born’s probability interpretation breaks down completely here because of distinguishable over-complete non-orthgonal base states used in the entanglement.