In a paper just published in Nature Materials ("Fractionalization of interstitials in curved colloidal crystals"), a team of researchers that includes William T.M. Irvine, assistant professor in physics at the University of Chicago, has succeeded in creating a defect in the structure of a single-layer crystal by simply inserting an extra particle, and then watching as the crystal “heals” itself. The trick to this self-healing property is that the crystal, an array of microscopic particles, must be curved.
This effect, which carries important implications for improving the conductivity of electronics and other realms of materials science, was predicted six years ago by physicist Mark Bowick of Syracuse University, along with David Nelson, Homin Shin and Alex Travesset, in research supported by the National Science Foundation. NSF also funded the new study.