Superconductors can radically change energy management as we know it, but most are commercially unusable because they only work close to absolute zero. A research group at EPFL has now published an innovative approach that may help us understand and use superconductivity at more realistic temperatures.

Superconductors are materials that allow electrical current to flow with no energy loss, a phenomenon that can lead to a vastly energy-efficient future (imagine computers that never overheat). Although most superconductors work close to absolute zero (0°K or -273.15°C), some can operate at higher temperatures (around -135°C) – but how that happens is something of a mystery. Publishing in a recent PNAS article, Fabrizio Carbone's Laboratory for Ultrafast Microscopy and Electron Scattering (LUMES) at EPFL has developed a method that can shed light on "high-temperature" superconductivity.

To read more, click here.