A team of researchers including members of the University of Chicago's Institute for Molecular Engineering highlight the power of emerging quantum technologies in two recent papers published in the Proceedings of the National Academy of Sciences (PNAS). These technologies exploit quantum mechanics, the physics that dominates the atomic world, to perform disparate tasks such as nanoscale temperature measurement and processing quantum information with lasers.
The two papers are both based on the manipulation of the same material, an atomic-scale defect in diamond known as the nitrogen vacancy center. Both works also leverage the intrinsic "spin" of this defect for the applications in temperature measurement and information processing. This spintronics approach involves understanding and manipulating the spin of electronics for technological advancement.
"These studies build on research efforts undertaken over the last 20 years to isolate and control single electronic spins in the solid state," said David Awschalom, a principle investigator on both papers and a Liew Family Professor in Molecular Engineering at UChicago. "Much of the initial motivation for working in this field was driven by the desire to make new computing technologies based on the principles of quantum physics. In recent years the research focus has broadened as we've come to appreciate that these same principles could enable a new generation of nanoscale sensors."
To read more, click here.