Researchers at the National Institute of Standards and Technology have reported in Nature the first observation of the "spin Hall effect" in a Bose-Einstein condensate (BEC), a cloud of ultracold atoms acting as a single quantum object. As one consequence, they made the atoms, which spin like a child's top, skew to one side or the other, by an amount dependent on the spin direction. Besides offering new insight into the quantum mechanical world, they say the phenomenon is a step toward applications in "atomtronics"—the use of ultracold atoms as circuit components.
The spin Hall effect is seen in electrons and other quantum particles when their motion depends on their magnetic orientation, or "spin." Previously, the spin Hall effect has been observed in electrons confined to a two-dimensional semiconductor strip, and in photons, but never before in a BEC.
A quantum circuit might use spins, described as "up" or "down," as signals, in a way analogous to how electric charge can represent ones and zeros in conventional computers. Quantum devices, however, can process information in ways that are difficult or impossible for conventional devices. Finding ways to manipulate spin is a major research effort among quantum scientists, and the team's results may help the spin Hall effect become a good tool for the job.