As was the case over seven decades ago in the early days of digital computing – when the switch at the heart of the system was a vacuum tube, not even a transistor – some of the smartest mathematicians and information theorists today are driving the development of quantum computers, trying to figure out the best physical components to use to run complex algorithms.

There is no consensus on what, precisely, a quantum computer is or isn’t, but what most will agree on is that a different approach is needed to solve some of the most intractable computing problems.

It may seem odd to have a detailed discussion about several different types of quantum computers at a supercomputing conference, but it actually makes sense for Google, which is a proud owner of one of the first quantum computers made by D-Wave, and researchers from the Delft University of Technology and Stanford University to have talked about the challenges of designing and building quantum computers to tackle algorithms that are simply not practical on modern digital systems, no matter how many exaflops they may have.

The other reason that it makes sense to talk about quantum computers at ISC 2015, which was hosted in Frankfurt, Germany last week, is something that may not be obvious to people, and it certainly was not to us. A quantum computer could end up being just another kind of accelerator for a massively parallel digital supercomputer, and even if the architectures don’t pan out that way, a quantum machine will require supercomputers of enormous scale to assist with its computations.

The joke going around ISC 2015 was that no one really understands what quantum computing is and isn’t, and it was so refreshing to see that in the very first slide of the first presentation, Yoshi Yamamoto, a professor at Stanford University and a fellow at NTT in Japan, showed even he was unsure of the nature of the quantum effects used to do calculations in the D-Wave machine employed by Google in its research in conjunction with NASA Ames. Take a look at the three different quantum architectures that were discussed:

quantum-computing-types


To read more, click here.