A team of UTS researchers has made a major breakthrough that could pave the way for the next generation of quantum communications.

The team, from the Materials and Technology for Energy Efficiency Research Strength at UTS Science, has found a material that emits a single pulse of a quantum light on demand at room temperature, removing one of the barriers to extremely fast and secure information processing.

Until now, room-temperature quantum emitters have only been observed in three-dimensional materials such as diamonds that hinder integration of these components in chips and commercial devices. The world is therefore in a race to find quantum light sources in atomically thin materials such as graphene – the famous single layer of carbon atoms.

"This material – layered hexagonal boron nitride (boron and nitrogen atoms that are arranged in a honeycomb structure) – is rather unique," Associate Professor Mike Ford said. "It is atomically thin and is traditionally used as a lubricant; however upon careful processing it can emit quantised pulses of light – single photons that can carry information.

"That's important because one of the big goals is to make optical computer chips that can operate based on light rather than electrons, therefore operating much faster with less heat generation."

The single photon sources were discovered by Trong Toan Tran, Kerem Bray, Mike Ford, Milos Toth and Igor Aharonovich from UTS Science, whose findings have just been published in the prestigious journal Nature Nanotechnology.

To read more, click here.