Although there are many counterintuitive ideas in quantum theory, the idea that influences can travel backwards in time (from the future to the past) is generally not one of them. However, recently some physicists have been looking into this idea, called "retrocausality," because it can potentially resolve some long-standing puzzles in quantum physics. In particular, if retrocausality is allowed, then the famous Bell tests can be interpreted as evidence for retrocausality and not for action-at-a-distance—a result that Einstein and others skeptical of that "spooky" property may have appreciated.

In a new paper published in Proceedings of The Royal Society A, Matthew S. Leifer at Chapman University and Matthew F. Pusey at the Perimeter Institute for Theoretical Physics have lent new theoretical support for the argument that, if certain reasonable-sounding assumptions are made, then must be retrocausal.



Read more at: https://phys.org/news/2017-07-physicists-retrocausal-quantum-theory-future.html#jCp

Although there are many counterintuitive ideas in quantum theory, the idea that influences can travel backwards in time (from the future to the past) is generally not one of them. However, recently some physicists have been looking into this idea, called "retrocausality," because it can potentially resolve some long-standing puzzles in quantum physics. In particular, if retrocausality is allowed, then the famous Bell tests can be interpreted as evidence for retrocausality and not for action-at-a-distance—a result that Einstein and others skeptical of that "spooky" property may have appreciated.

In a new paper published in Proceedings of The Royal Society A, physicists Matthew S. Leifer at Chapman University and Matthew F. Pusey at the Perimeter Institute for Theoretical Physics have lent new theoretical support for the argument that, if certain reasonable-sounding assumptions are made, then
quantum theory must be retrocausal.

To read more, click here.