The standard model of particle physics describes all the known elementary particles, like electrons and quarks. Many of these particles have analogs in condensed matter, where they arise as collective states, or quasiparticles. One example is an electronic state in graphene that behaves like a massless Dirac fermion—a spin-1/2 particle that is not its own antiparticle. But condensed-matter physics may offer a longer list of “elementary particles” than found in the standard model. This is due to the fact that—unlike fundamental particles—quasiparticles in solids are not constrained by so-called Lorentz invariance. A Lorentz-violating quasiparticle is one whose momentum-energy relation depends on the direction it travels. Three separate teams [13] have collected the first experimental evidence of quasiparticles called type-II Dirac fermions, which break Lorentz invariance. These electronic states, which have no counterpart in the standard model, could be associated with a new type of superconductivity, which has potential applications in thermoelectric devices and quantum computing.

To read more, click here.