An electricity-conducting, environment-sensing, shape-changing machine the size of a human cell? Is that even possible?
Cornell University physicists Paul McEuen and Itai Cohen not only say yes, but they've actually built the "muscle" for one.
With postdoctoral researcher Marc Miskin at the helm, the team has made a robot exoskeleton that can rapidly change its shape upon sensing chemical or thermal changes in its environment. And, they claim, these microscale machines -- equipped with electronic, photonic and chemical payloads -- could become a powerful platform for robotics at the size scale of biological microorganisms.
"You could put the computational power of the spaceship Voyager onto an object the size of a cell," Cohen said. "Then, where do you go explore?"
"We are trying to build what you might call an 'exoskeleton' for electronics," said McEuen, the John A. Newman Professor of Physical Science and director of the Kavli Institute at Cornell for Nanoscale Science. "Right now, you can make little computer chips that do a lot of information-processing ... but they don't know how to move or cause something to bend."
Their work is outlined in "Graphene-based Bimorphs for Micron-sized, Autonomous Origami Machines," published Jan. 2 in Proceedings of the National Academy of Sciences. Miskin is lead author; other contributors included David Muller, the Samuel B. Eckert Professor of Engineering, and doctoral students Kyle Dorsey, Baris Bircan and Yimo Han.
To read more, click here.