Magnets, whether in the form of a bar, horseshoe or electromagnet, always have two poles. If you break a magnet in half, you'll end up with two new magnets, each with its own magnetic north and south.
But some physics theories predict the existence of single-pole magnets—a situation akin to electric charges, which come in either positive or negative chunks. One particular incarnation—called the Yang monopole after its discoverer—was originally predicted in the context of high-energy physics, but it has never been observed.
Now, a team at JQI led by postdoctoral researcher Seiji Sugawa and JQI Fellow Ian Spielman have succeeded in emulating a Yang monopole with an ultracold gas of rubidium atoms. The result, which provides another example of using cold quantum gases to simulate other areas of physics, was reported in the June 29 issue of Science.
"This new result links together ideas born in high-energy physics—the Yang monopole—with concepts in condensed matter physics—topological phase transitions—and realizes them in the atomic physics laboratory," Spielman says.