Planetary systems can be harsh environments in their early history. The young worlds orbit suns in stellar nurseries, clusters of stars where violent encounters are commonplace. None of this makes it easy for life to get going, but now astronomers at the University of Sheffield find one positive of this tumultuous period. A model developed by undergraduate student Bethany Wootton and Royal Society Dorothy Hodgkin Fellow Dr Richard Parker looks at how the habitable zone -- the region around a star where the temperature allows liquid water to exist -- changes around pairs of stars, so-called binary systems.
The two scientists discovered that an encounter with a passing third star may squeeze the binary pair together, expanding the habitable zone in the process. Their results appear in a new paper in the journal Monthly Notices of the Royal Astronomical Society.
The habitable zone, sometimes called the 'Goldilocks zone' as the temperature is not too hot and not too cold, is thought to be essential for the development of life on a planet. If a planet lies outside this zone, then the formation of the complex molecules needed for life is less likely to happen.
To read more, click here.